nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, No.153 24-36
绿色电力对碳排放效率的影响研究
基金项目(Foundation): 河北省社会科学基金“面向碳达峰与碳中和目标的河北省电力行业减排路径及影响研究”(HB21YJ053); 国网北京市电力公司科技项目“园区碳监测与可信碳交易技术研究及示范”(520210230004)
邮箱(Email):
DOI: 10.14092/j.cnki.cn11-3956/c.2025.01.003
摘要:

绿色电力发展是电力行业节能减排、提质增效的重要举措,也是我国完成“双碳”目标、实现经济社会绿色转型发展的战略方向。因此,本文基于2010年-2021年30个省份的空间面板数据,构建绿色电力与碳排放效率的空间杜宾模型,并引入绿色技术创新作为中介变量,探求绿色电力对碳排放效率的作用机制。研究表明:从全国总体来看,绿色电力可以显著提高碳排放效率,绿色电力对于碳排放效率具有正向的空间溢出效应,绿色电力可以通过推进绿色技术创新来提高碳排放效率。从地区分布来看,绿色电力对碳排放效率的影响具有地区异质性,在东部地区为抑制作用,在中西部地区为促进作用。

Abstract:

The development of green power is an important measure to save energy, reduce emissions,improve quality and increase efficiency in the power industry. It is also a strategic direction for China to achieve its goal of carbon neutrality and promote green economic and social transformation and development.Based on spatial panel data from 30 provinces from 2010 to 2021, this paper constructs a spatial Dobbin model to analyze the relationship between green power and carbon emission efficiency. The study introduces green technological innovation as an intermediary variable to explore the mechanism of green power on carbon emission efficiency. The study indicates that:(1) from the national perspective, green power can significantly improve carbon emission efficiency;(2) from the national perspective, green power has a positive spatial spillover effect on carbon emission efficiency;(3) from the national perspective, green power can improve carbon emission efficiency by promoting green technology innovation.(4) from the perspective of regional distribution, the impact of green power on carbon emission efficiency is regionally heterogeneous,with an inhibitory effect in the eastern region and a promotional effect in the central and western regions.

参考文献

[1]孙兴,刘熙.中国城市碳排放效率的时空演变及影响因素--基于异质性空间随机前沿模型[J].地理研究,2023,42(12):3182-3201.

[2]王运豪,杨皓翔,官国宇.碳排放、能源消费与经济增长--基于中国省级面板数据的中介效应模型[J/OL].数理统计与管理(2023-11-29).DOI:10.13860/j.cnki.sltj.20231128-001.

[3]杜效鹄,周兴波,周建平.碳中和背景下我国电力碳排放水平分析[J].水力发电学报,2024,43(04):23-33.

[4]王圣,庄柯,徐静馨.全球绿色电力及我国电力低碳发展分析[J].环境保护,2022,50(19):37-41

[5]杨浩昌,钟时权,李廉水.绿色技术创新与碳排放效率:影响机制及回弹效应[J].科技进步与对策,2023,40(08):99-107.

[6]Mostafaeipour A,Bidokhti A,Fakhrzad M B.A new model for the use of renewable electricity to reduce carbon dioxide emissions[J].Energy,2022,238:121602

[7]Shi W,Li W,Qiao F W,et al.An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction[J].Energy Policy,2023,182:113770

[8]Sun J J,Dong F.Decomposition of carbon emission reduction efficiency and potential for clean energy power:Evidence from 58 countries[J].Journal of Cleaner Production,2022,363:132312

[9]Naeem M A,Appiah M,Taden J,et al.Transitioning to clean energy:assessing the impact of renewable energy,bio-capacity and access to clean fuel on carbon emissions in OECD economies[J].Energy Economics,2023,127:107091,

[10]Ali U,Guo Q B,Kartal M T,et al.The impact of renewable and non-renewable energy consumption on carbon emission intensity in China:fresh evidence from novel dynamic ARDL simulations[J].Journal of Environmental Management,2022,320:115782,

[11]Li B L,Haneklaus N.Reducing CO2 emissions in G7 countries:the role of clean energy consumption,trade openness and urbanization[J].Energy Reports,2022,8:704-713

[12]刘娟,马涟蕊,冯婉怡.可再生能源技术创新与行业碳减排--基于中国省级面板数据的实证检验[J].科技进步与对策,2023,40(15):83-93.

[13]孙景兵,薛倩.科技创新提高碳排放效率了吗?[J].生态经济,2022,38(06):22-28+34.

[14]Du K R,Li P Z,Yan Z M.Do green technology innovations contribute to carbon dioxide emission reduction?Empirical evidence from patent data[J].Technological Forecasting and Social Change,2019,146:297-303,

[15]Yang G L,Zhang G X,Cao D Q,et al.China’s provincial-level sustainable energy transition requires accelerating renewable energy technological innovation[J].Energy,2024,288:129672,

[16]Li K,Lin B Q.How to promote energy efficiency through technological progress in China?[J].Energy,2018,143:812-821

[17]Liu X X,Niu Q,Dong S L,et al.How does renewable energy consumption affect carbon emission intensity?Temporal-spatial impact analysis in China[J].Energy,2023,284:128690,

[18]Zhang X S,Jiang Q Q,Iqbal K S,et al.Achieving sustainability and energy efficiency goals:assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China[J].Energy Policy,2021,155:112332,

[19]Tone K.A slacks-based measure of super-efficiency in data envelopment analysis[J].European Journal of Operational Research,2002,143(01):32-41,

[20]宁论辰,郑雯,曾良恩.2007-2016年中国省域碳排放效率评价及影响因素分析--基于超效率SBM-Tobit模型的两阶段分析[J].北京大学学报(自然科学版),2021,57(01):181-188,

[21]张军,吴桂英,张吉鹏.中国省际物质资本存量估算:1952-2000[J].经济研究,2004,39(10):35-44.

[22]尹妮妮,王川川,闫鹏程.“一带一路”省域碳排放效率及驱动因素研究[J].煤炭工程,2022,54(09):182-186.

[23]李建豹,黄贤金,揣小伟,等.长三角地区碳排放效率时空特征及影响因素分析[J].长江流域资源与环境,2020,29(07):1486-1496.

[24]胡剑波,王楷文.中国省域碳排放效率时空差异及空间收敛性研究[J].管理学刊,2022,35(04):36-52,

[25]王新平,沈颖双,苏畅.黄河流域城市碳排放效率时空分异及其溢出效应研究[J].生态经济,2023,39(04):26-34.

[26]宋青,李超群,陈骏宇.城市尺度下长三角区域碳排放效率时空演化及影响因素研究[J].南京林业大学学报(自然科学版),2023,47(06):251-262.

[27]吴小妮,管卫华,张惠,等.长三角城市群碳排放效率与高质量发展的时空耦合特征及影响因素[J].长江流域资源与环境,2023,32(11):2273-2284.

基本信息:

DOI:10.14092/j.cnki.cn11-3956/c.2025.01.003

中图分类号:F426.61;X322

引用信息:

[1]李伟,蒋浩,周文凯.绿色电力对碳排放效率的影响研究[J].华北电力大学学报(社会科学版),2025,No.153(01):24-36.DOI:10.14092/j.cnki.cn11-3956/c.2025.01.003.

基金信息:

河北省社会科学基金“面向碳达峰与碳中和目标的河北省电力行业减排路径及影响研究”(HB21YJ053); 国网北京市电力公司科技项目“园区碳监测与可信碳交易技术研究及示范”(520210230004)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文